2,270 research outputs found

    Interaction between Polo and BicD proteins links oocyte determination and meiosis control in Drosophila.: oocyte fate and meiosis control

    Get PDF
    Meiosis is a specialized cell cycle limited to the gametes in Metazoa. In Drosophila, oocyte determination and meiosis control are interdependent processes, and BicD appears to play a key role in both. However, the exact mechanism of how BicD-dependent polarized transport could influence meiosis and vice versa remains an open question. In this article, we report that the cell cycle regulatory kinase Polo binds to BicD protein during oogenesis. Polo is expressed in all cells during cyst formation before specifically localizing to the oocyte. This is the earliest known example of asymmetric localization of a cell-cycle regulator in this process. This localization is dependent on BicD and the Dynein complex. Loss- and gain-of-function experiments showed that Polo has two independent functions. On the one hand, it acts as a trigger for meiosis. On the other hand, it is independently required, in a cell-autonomous manner, for the activation of BicD-dependent transport. Moreover, we show that Polo overexpression can rescue a hypomorphic mutation of BicD by restoring its localization and its function, suggesting that the requirement for Polo in polarized transport acts through regulation of BicD. Taken together, our data indicate the existence of a positive feedback loop between BicD and Polo, and we propose that this loop represents a functional link between oocyte specification and the control of meiosis

    Optical Coherence Spectro-Tomography by all-Optical Depth-Wavelength analysis

    Full text link
    Current spectroscopic optical coherence tomography (OCT) methods rely on a posteriori numerical calculation. We present an alternative for accessing optically the spectroscopic information in OCT, i.e. without any post-processing, by using a grating based correlation and a wavelength demultiplexing system. Conventional A-scan and spectrally resolved A-scan are directly recorded on the image sensor. Furthermore, due to the grating based system, no correlation scan is necessary. In the frame of this paper we present the principle of the system as well as first experimental results

    Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves

    Get PDF
    Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As a further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.Comment: 5 pages, 4 figure

    Nonlinear beam self-imaging and self-focusing dynamics in a GRIN multimode optical fiber: theory and experiments

    Full text link
    Beam self-imaging in nonlinear graded-index multimode optical fibers is of interest for many applications, such as implementing a fast saturable absorber mechanism in fiber lasers via multimode interference. We obtain an exact solution for the nonlinear evolution of first and second order moments of a laser beam carried by a graded-index multimode fiber, predicting that the spatial self-imaging period does not vary with power. Whereas the amplitude of the oscillation of the beam width is power-dependent. We have experimentally studied the longitudinal evolution of beam self-imaging by means of femtosecond laser pulse propagation in both the anomalous and the normal dispersion regime of a standard telecom graded-index multimode optical fiber. Light scattering out of the fiber core via visible fluorescence emission and harmonic wave generation permits us to directly confirm that the self-imaging period is invariant with power. Spatial shift and splitting of the self-imaging process under the action of self-focusing are also emphasized

    Stable mode-locked operation of a low repetition rate diode-pumped Nd : GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror

    No full text
    International audienceIn this paper, we present the mode-locked operation of an ultrarobustly stabilised Nd:GdVO4 laser with low repetition rate by combining quadratic polarisation switching and a semiconductor saturable absorber mirror (SESAM). In addition, similar experiment was also done with Nd:YVO4. For Nd:GdVO4, 16-ps pulses at 1063nm with a repetition rate of 3.95MHz have been obtained for a laser average output power of 1.4W. For Nd:YVO4, the performance was 2.5W of average power for15-ps pulses at 1064nm. Moreover, we demonstrate experimentally the advantage of combining these two passive mode locking techniques in terms of stability ranges. We show how the dual mode-locking technique is crucial to obtain a stable and long-term mode-locked regime in our case of a diode-pumped Nd:GdVO4 laser operating at low repetition rate and more generally how this dual mode-locking technique improves the stability range of the modelocked operation giving more flexibility on different parameter

    Nonlinear polarization dynamics of Kerr beam self-cleaning in a GRIN multimode optical fiber

    Full text link
    We experimentally study polarization dynamics of Kerr beam self-cleaning in a graded-index multimode optical fiber. We show that spatial beam cleaning is accompanied by nonlinear polarization rotation, and a substantial increase of the degree of linear polarization.Comment: 5 pages, 6 figure

    Nonlinear optics in multimode fibers

    Get PDF
    We overview the emerging field of nonlinear optics in multimode optical fibers, which enable new methods for the ultrafast light-activated control of temporal, spatial and spectral degrees of freedom of intense pulsed light beams

    Nonlinear dynamics of spatio-temporal waves in multimode fibres

    Get PDF
    Nonlinear multimode fibers provide an intriguing test-bed for exploring complex spatio-temporal beam dynamics. We overview recent experimental observations of Kerr beam self-cleaning, parametric sideband series and supercontinuum generation in passive and active multimode optical fibers

    Efficiency of dispersive wave generation in dual concentric core microstructured fiber

    Full text link
    We describe the generation of powerful dispersive waves that are observed when pumping a dual concentric core microstructured fiber by means of a sub-nanosecond laser emitting at the wavelength of~1064 nm. The presence of three zeros in the dispersion curve, their spectral separation from the pump wavelength, and the complex dynamics of solitons originated by the pump pulse break-up, all contribute to boost the amplitude of the dispersive wave on the long-wavelength side of the pump. The measured conversion efficiency towards the dispersive wave at 1548 nm is as high as 50%. Our experimental analysis of the output spectra is completed by the acquisition of the time delays of the different spectral components. Numerical simulations and an analytical perturbative analysis identify the central wavelength of the red-shifted pump solitons and the dispersion profile of the fiber as the key parameters for determining the efficiency of the dispersive wave generation process.Comment: 11 pages, 12 figure
    • …
    corecore